资源类型

期刊论文 34

年份

2023 6

2022 2

2021 4

2020 5

2018 4

2017 2

2015 4

2013 1

2010 2

2009 1

2008 1

2007 1

展开 ︾

关键词

一维(1D) 1

催化剂 1

协同效应 1

单晶铜 1

原子力显微镜 1

双金属羟基氧化物 1

周期性纳米结构 1

有序化 1

析氧反应 1

气体传感器;化学式电阻器;模板法;纳米结构;维度 1

氧还原反应(ORR) 1

电极 1

纳米加工 1

质子交换膜燃料电池(PEMFC) 1

高电流密度 1

展开 ︾

检索范围:

排序: 展示方式:

Facile synthesis of hierarchical flower-like Ag/Cu

Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 813-823 doi: 10.1007/s11705-019-1854-8

摘要: Novel, hierarchical, flower-like Ag/Cu O and Au/Cu O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO . Cu O nanospheres with a uniform size of ~180 nm were initially synthesized. Thereafter, Cu O was used as a sacrificial template to prepare a series of Ag/Cu O composites through galvanic replacement. By varying the Ag/Cu atomic ratio, Ag /Cu O, having a hierarchical, flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu O sphere, was prepared. The as-prepared Ag /Cu O samples presented higher Faradaic efficiencies (FE) for CO and relatively suppressed H evolution than the parent Cu O nanospheres due to the combination of Ag with Cu O in the former. Notably, the highest CO evolution rate was achieved with Ag /Cu O due to the larger electroactive surface area furnished by the hierarchical structure. The same hierarchical flower-like structure was also obtained for the Au /Cu O composite, where the FE (10%) was even higher than that of Ag /Cu O. Importantly, the results reveal that Ag /Cu O and Au /Cu O both exhibit remarkably improved stability relative to Cu O. This study presents a facile method of developing hierarchical metal-oxide composites as efficient and stable electrocatalysts for the electrochemical reduction of CO .

关键词: bimetallic nanostructure     hierarchical metal/oxide nanomaterial     galvanic replacement     electrochemical reduction of CO2    

Ni-Co bimetallic catalyst for CH

Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 476-480 doi: 10.1007/s11705-010-0512-y

摘要: A co-precipitation method was employed to prepare Ni/Al O -ZrO , Co/Al O -ZrO and Ni-Co/Al O -ZrO catalysts. Their properties were characterized by N adsorption (BET), thermogravimetric analysis TGA , temperature-programmed reduction (TPR), temperature-programmed desorption (CO -TPD), and temperature-programmed surface reaction (CH -TPSR and CO -TPSR). Ni-Co/Al O -ZrO bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO adsorption sites (C+ CO = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH -CO -TPSR, there were 80.9% and 81.5% higher CH and CO conversion over Ni-Co/Al O -ZrO catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al O -ZrO catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.

关键词: Ni-Co bimetallic catalyst     composite support     CH4 reforming with CO2    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive

《化学科学与工程前沿(英文)》   页码 1623-1631 doi: 10.1007/s11705-022-2202-y

摘要: The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents. Here, we report a simple but efficient strategy for dispersing active components by using a confined space, which is formed by mesoporous silica walls and templates in the as-prepared SBA-15 (AS). Such a confined space does not exist in the conventional support, calcined SBA-15, which does not contain a template. The Cu and Zn precursors were introduced to the confined space in the AS and were converted to CuO and ZnO during calcination, during which the template was also removed. The results show that up to 5 mmol·g–1 of CuO and ZnO can be well dispersed; however, severe aggregation of both oxides takes place in the sample derived from the calcined SBA-15 with the same loading. Confined space in the AS and the strong interactions caused by the abundant hydroxyl groups are responsible for the dispersion of CuO and ZnO. The bimetallic materials were employed for the adsorptive separation of propene and propane. The samples prepared from the as-prepared SBA-15 showed superior performance to their counterparts from the calcined SBA-15 in terms of both adsorption capacity of propene and selectivity for propene/propane.

关键词: bimetallic adsorbents     confined space     mesoporous silica     propene/propane separation    

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 832-839 doi: 10.1007/s11783-015-0778-x

摘要: Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.

关键词: degradation     bimetallic nanoparticles     nanoscale zero-valent iron     polybrominated diphenyl ethers    

Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison

Kubra Ulucan-Altuntas, Eyup Debik

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1196-2

摘要: DDT undergoes dechlorination via Fe/Pd bimetallic nanoparticle. The oxidation effect of nZVI on DDT is greatly improved when Pd is dopped. The highest concentration to be treated under cancerogenesis limit was 110 mg/L. The dechlorination of DDT is more like to DDE via Fe/Pd but to DDD via nZVI. Degradation products concentrations are lowered via Fe/Pd when compared with nZVI. In this study, the bimetallic Fe/Pd nanoparticle was synthesized using the catalytic element palladium to increase the effect of nano zero valent iron (nZVI), in the light of the information obtained from our previous study, in which the nZVI synthesis method was modified. Dichlorodiphenyltrichloroethane (DDT), one of the most widely used persistent organic pollutant pesticides in the world, was investigated in terms of its degradation by Fe/Pd nanoparticles and the difference with nZVI was determined. During the study, the Fe/Pd concentration, initial DDT concentration, and contact time were selected as variables affecting the treatment. The highest possible initial DDT concentration for the treatment with Fe/Pd bimetallic nanoparticle was investigated to obtain the DDT effluent concentration below the carcinogenesis limit, 0.23 µg/L. The highest concentration that could be treated was found to be 109.95 mg/L with Fe/Pd. It was found that 44.3 min of contact time and 550 mg/L Fe/Pd concentration were needed to achieve this treatment.

关键词: Persistent organic pollutants     nZVI     Bimetallic nanoparticle     Organochlorine pesticides     DDT    

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1962-1972 doi: 10.1007/s11705-023-2359-z

摘要: Within the “hydrogen chain”, the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes. Despite the commercial application of the high-temperature water gas shift, novel catalysts characterized by higher intrinsic activity (especially at low temperatures), good thermal stability, and no chromium content are needed. In this work, we propose bimetallic iron-copper catalysts supported on ceria, characterized by low active phase content (iron oxide + copper oxide < 5 wt %). Fresh and used samples were characterized by inductively coupled plasma mass spectrometry, X-ray diffraction, nitrogen physisorption, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and temperature programmed reduction in hydrogen to relate physicochemical features and catalytic activity. The sample with iron/copper ≈ 1 and 4 wt % active phase content showed the best catalytic properties in terms of turnover frequency, no methane formation, and stability. Its unique properties were due to both strong iron-copper interaction and strong metal-support interaction, leading to outstanding redox behavior.

关键词: water gas shift     iron     copper     bimetallic catalysts     ceria     hydrogen    

Mechanistic understanding of Cu-based bimetallic catalysts

You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 689-748 doi: 10.1007/s11705-019-1902-4

摘要: Copper has received extensive attention in the field of catalysis due to its rich natural reserves, low cost, and superior catalytic performance. Herein, we reviewed two modification mechanisms of co-catalyst on the coordination environment change of Cu-based catalysts: (1) change the electronic orbitals and geometric structure of Cu without any catalytic functions; (2) act as an additional active site with a certain catalytic function, as well as their catalytic mechanism in major reactions, including the hydrogenation to alcohols, dehydrogenation of alcohols, water gas shift reaction, reduction of nitrogenous compounds, electrocatalysis and others. The influencing mechanisms of different types of auxiliary metals on the structure-activity relationship of Cu-based catalysts in these reactions were especially summarized and discussed. The mechanistic understanding can provide significant guidance for the design and controllable synthesis of novel Cu-based catalysts used in many industrial reactions.

关键词: copper     bimetallic catalyst     coordination     modification mechanism     catalytic application    

Interfacial induction and regulation for microscale crystallization process: a critical review

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 838-853 doi: 10.1007/s11705-021-2129-8

摘要: Microscale crystallization is at the frontier of chemical engineering, material science, and biochemical research and is affected by many factors. The precise regulation and control of microscale crystal processes is still a major challenge. In the heterogeneous induced nucleation process, the chemical and micro/nanostructural characteristics of the interface play a dominant role. Ideal crystal products can be obtained by modifying the interface characteristics, which has been proven to be a promising strategy. This review illustrates the application of interface properties, including chemical characteristics (hydrophobicity and functional groups) and the morphology of micro/nanostructures (rough structure and cavities, pore shape and pore size, surface porosity, channels), in various microscale crystallization controls and process intensification. Finally, possible future research and development directions are outlined to emphasize the importance of interfacial crystallization control and regulation for crystal engineering.

关键词: interfacial crystallization     heterogeneous nucleation     supersaturation     micro/nanostructure     process control and intensification    

Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine

ZHANG Gaojie, WU Jinming, LIU Shaoguang, YAN Mi

《化学科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 44-48 doi: 10.1007/s11705-008-0001-8

摘要: A titania nanorod film was synthesized by direct oxidation of metallic Ti with hydrogen peroxide solution under a low temperature. Titania nanoparticles were then filled into the gaps among the nanorods through an infiltration sol-gel procedure to form a composite titania film with an ordered nanostructure. X-ray diffraction spectra indicate that the composite film was a mixture of anatase and rutile while the titania film obtained by only using a sol-gel procedure was pure anatase. Field emission scanning electron microscopy observations show that titania nanoparticles were embedded into the titania nanorod film. Photoluminescence spectra suggest the enhanced separation of electron and hole pairs for the obtained composite titania film over the corresponding titania nanorod film. The composite titania film exhibited improved ability to photodegrade rhodamine B in water compared with the titania nanorod film. The apparent photodegradation rate constant, fitting a pseudo-first-order, was 3 times of that obtained by the sol-gel derived titania film at the same weight. The improved photocatalytic activity for the composite titania film could be attributed to the enhanced separation of electron and hole pairs due to the embedding of the titania nanoparticles within the titania nanorods.

关键词: constant     weight     apparent photodegradation     hydrogen     nanorod    

Investigation of nanostructure of konjac-based water absorbents with atomic force microscopy

Shengrong GENG, Ruotai LIN, Mingli CHEN, Shaoyang LIU, Yifen WANG,

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 357-362 doi: 10.1007/s11705-009-0245-y

摘要: Atomic force microscopy technology is gradually spreading to almost all aspects, including food science and technology, since it was first invented in 1986. In this study, this powerful instrument was applied to image nanostructures of three water absorbents—original konjac powder, konjac powder grafted with acrylic acid using Co γ-irradiation and regenerated grafted powder. Water absorption capacities and the rates of the three absorbents were also determined in this work. Original konjac powder could only absorb 60 times (w/w) of water, while 270 times for the grafted absorbent and 360 times for the regenerated absorbent. The initial water absorption rates in both tap and distilled water were high, but the rate decreased steeply as time elapsed. After 20min, the absorbent was close to saturated status. These physical properties were in accordance with the nanostructures of these three water absorbents.

关键词: regenerated grafted     -irradiation     grafted     grafted absorbent     accordance    

A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells

Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 388-394 doi: 10.1007/s11783-012-0475-y

摘要: Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabricated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxidation in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were characterized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt Bi /Au had a much higher catalytic activity than Pt Bi /Au and Pt Bi /Au, and Pt Bi /Au exhibited a current density of 2.7 mA·cm , which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.

关键词: catalyst     electrochemical deposition     formic acid oxidation     fuel cell     gold wire array     microfabrication    

The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the

Guozhi Jia, Chunmu Guo, Wei Wang, Xuefeng Bai, Xiaomeng Wei, Xiaofang Su, Tong Li, Linfei Xiao, Wei Wu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1111-1124 doi: 10.1007/s11705-020-2031-9

摘要: The hydroisomerization of -hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil. This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnation or sequential impregnation process. Furthermore, monometallic catalysts with loading either Pt or Pd are also prepared for comparison. The effects of the metal species and impregnation order on the characteristics and catalytic performance of the catalysts are investigated. The catalytic test results indicate that the maximum -hexadecane yield over different catalysts increases as follows: Pt/silicoaluminophosphate SAPO-41

关键词: SAPO-41 molecular sieve     Pt-Pd bimetallic site     bifunctional catalysts     n-hexadecane     hydroisomerization    

Recent advances in SERS detection of perchlorate

Jumin Hao, Xiaoguang Meng

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 448-464 doi: 10.1007/s11705-017-1611-9

摘要: Perchlorate has recently emerged as a widespread environmental contaminant of healthy concern. Development of novel detection methods for perchlorate with the potential for field use has been an urgent need. The investigation has shown that surface-enhanced Raman scattering (SERS) technique has great potential to become a practical analysis tool for the rapid screening and routine monitoring of perchlorate in the field, particularly when coupled with portable/handheld Raman spectrometers. In this review article, we summarize progress made in SERS analysis of perchlorate in water and other media with an emphasis on the development of SERS substrates for perchlorate detection. The potential of this technique for fast screening and field testing of perchlorate-contaminated environmental samples is discussed. The challenges and possible solutions are also addressed, aiming to provide a better understanding on the development directions in the research field.

关键词: perchlorate     SERS     detection     substrate     modification     nanostructure    

Simultaneous removal of trihalomethanes by bimetallic Ag/Zn: kinetics study

Ahmed H A DABWAN, Satoshi KANECO, Hideyuki KATSUMATA, Kiyoyuki EGUSA, Tohru SUZUKI, Kiyohisa OHTA,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 322-327 doi: 10.1007/s11705-009-0261-y

摘要: In the present work, bimetallic silver/zinc was applied into the degradation of trihalomethanes, THMs: CHCl, CHBrCl, CHBrCl, and CHBr. The kinetics reaction rates and removal efficiencies of the THM compound mixtures, in the aqueous solutions, were investigated. Batch experiments were conducted under mild conditions, ambient temperature, and pressure. The primary degradation reaction followed a pseudo-first-order kinetic law. The first-order rate constants and the degradation efficiencies followed the decreasing order of CHBr>CHBrCl>CHBrCl>CHCl. The bond dissociation energy and hydrophilic/hydrophobic characteristics of the THM compounds may become the most important parameters affecting the degradation kinetics and efficiency by bimetallic Ag/Zn.

关键词: reaction     first-order     dissociation     degradation reaction     aqueous    

标题 作者 时间 类型 操作

Facile synthesis of hierarchical flower-like Ag/Cu

Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang

期刊论文

Ni-Co bimetallic catalyst for CH

Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive

期刊论文

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN

期刊论文

Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison

Kubra Ulucan-Altuntas, Eyup Debik

期刊论文

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

期刊论文

Mechanistic understanding of Cu-based bimetallic catalysts

You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang

期刊论文

Interfacial induction and regulation for microscale crystallization process: a critical review

期刊论文

Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine

ZHANG Gaojie, WU Jinming, LIU Shaoguang, YAN Mi

期刊论文

Investigation of nanostructure of konjac-based water absorbents with atomic force microscopy

Shengrong GENG, Ruotai LIN, Mingli CHEN, Shaoyang LIU, Yifen WANG,

期刊论文

A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells

Shu-Hong LI, Yue ZHAO, Jian CHU, Wen-Wei LI, Han-Qing YU, Gang LIU, Yang-Chao TIAN

期刊论文

The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the

Guozhi Jia, Chunmu Guo, Wei Wang, Xuefeng Bai, Xiaomeng Wei, Xiaofang Su, Tong Li, Linfei Xiao, Wei Wu

期刊论文

Recent advances in SERS detection of perchlorate

Jumin Hao, Xiaoguang Meng

期刊论文

Simultaneous removal of trihalomethanes by bimetallic Ag/Zn: kinetics study

Ahmed H A DABWAN, Satoshi KANECO, Hideyuki KATSUMATA, Kiyoyuki EGUSA, Tohru SUZUKI, Kiyohisa OHTA,

期刊论文